Black Friday Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Google Updated Professional-Machine-Learning-Engineer Exam Questions and Answers by lavinia

Page: 21 / 21

Google Professional-Machine-Learning-Engineer Exam Overview :

Exam Name: Google Professional Machine Learning Engineer
Exam Code: Professional-Machine-Learning-Engineer Dumps
Vendor: Google Certification: Machine Learning Engineer
Questions: 285 Q&A's Shared By: lavinia
Question 84

You have a demand forecasting pipeline in production that uses Dataflow to preprocess raw data prior to model training and prediction. During preprocessing, you employ Z-score normalization on data stored in BigQuery and write it back to BigQuery. New training data is added every week. You want to make the process more efficient by minimizing computation time and manual intervention. What should you do?

Options:

A.

Normalize the data using Google Kubernetes Engine

B.

Translate the normalization algorithm into SQL for use with BigQuery

C.

Use the normalizer_fn argument in TensorFlow's Feature Column API

D.

Normalize the data with Apache Spark using the Dataproc connector for BigQuery

Discussion
Question 85

You need to design an architecture that serves asynchronous predictions to determine whether a particular mission-critical machine part will fail. Your system collects data from multiple sensors from the machine. You want to build a model that will predict a failure in the next N minutes, given the average of each sensor’s data from the past 12 hours. How should you design the architecture?

Options:

A.

1. HTTP requests are sent by the sensors to your ML model, which is deployed as a microservice and exposes a REST API for prediction

2. Your application queries a Vertex AI endpoint where you deployed your model.

3. Responses are received by the caller application as soon as the model produces the prediction.

B.

1. Events are sent by the sensors to Pub/Sub, consumed in real time, and processed by a Dataflow stream processing pipeline.

2. The pipeline invokes the model for prediction and sends the predictions to another Pub/Sub topic.

3. Pub/Sub messages containing predictions are then consumed by a downstream system for monitoring.

C.

1. Export your data to Cloud Storage using Dataflow.

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into Cloud SQL.

D.

1. Export the data to Cloud Storage using the BigQuery command-line tool

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into BigQuery.

Discussion
Page: 21 / 21
Title
Questions
Posted

Professional-Machine-Learning-Engineer
PDF

$36.75  $104.99

Professional-Machine-Learning-Engineer Testing Engine

$43.75  $124.99

Professional-Machine-Learning-Engineer PDF + Testing Engine

$57.75  $164.99