Winter Special Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: big60

Google Updated Professional-Machine-Learning-Engineer Exam Questions and Answers by montgomery

Page: 11 / 21

Google Professional-Machine-Learning-Engineer Exam Overview :

Exam Name: Google Professional Machine Learning Engineer
Exam Code: Professional-Machine-Learning-Engineer Dumps
Vendor: Google Certification: Machine Learning Engineer
Questions: 285 Q&A's Shared By: montgomery
Question 44

You work for an advertising company and want to understand the effectiveness of your company's latest advertising campaign. You have streamed 500 MB of campaign data into BigQuery. You want to query the table, and then manipulate the results of that query with a pandas dataframe in an Al Platform notebook. What should you do?

Options:

A.

Use Al Platform Notebooks' BigQuery cell magic to query the data, and ingest the results as a pandas dataframe

B.

Export your table as a CSV file from BigQuery to Google Drive, and use the Google Drive API to ingest the file into your notebook instance

C.

Download your table from BigQuery as a local CSV file, and upload it to your Al Platform notebook instance Use pandas. read_csv to ingest the file as a pandas dataframe

D.

From a bash cell in your Al Platform notebook, use the bq extract command to export the table as a CSV file to Cloud Storage, and then use gsutii cp to copy the data into the notebook Use pandas. read_csv to ingest the file as a pandas dataframe

Discussion
Question 45

You are developing a recommendation engine for an online clothing store. The historical customer transaction data is stored in BigQuery and Cloud Storage. You need to perform exploratory data analysis (EDA), preprocessing and model training. You plan to rerun these EDA, preprocessing, and training steps as you experiment with different types of algorithms. You want to minimize the cost and development effort of running these steps as you experiment. How should you configure the environment?

Options:

A.

Create a Vertex Al Workbench user-managed notebook using the default VM instance, and use the %%bigquery magic commands in Jupyter to query the tables.

B.

Create a Vertex Al Workbench managed notebook to browse and query the tables directly from the JupyterLab interface.

C.

Create a Vertex Al Workbench user-managed notebook on a Dataproc Hub. and use the %%bigquery magic commands in Jupyter to query the tables.

D.

Create a Vertex Al Workbench managed notebook on a Dataproc cluster, and use the spark-bigquery-connector to access the tables.

Discussion
Osian
Dumps are fantastic! I recently passed my certification exam using these dumps and I must say, they are 100% valid.
Azaan Aug 8, 2024
They are incredibly accurate and valid. I felt confident going into my exam because the dumps covered all the important topics and the questions were very similar to what I saw on the actual exam. The team of experts behind Cramkey Dumps make sure the information is relevant and up-to-date.
Yusra
I passed my exam. Cramkey Dumps provides detailed explanations for each question and answer, so you can understand the concepts better.
Alisha Aug 29, 2024
I recently used their dumps for the certification exam I took and I have to say, I was really impressed.
Amy
I passed my exam and found your dumps 100% relevant to the actual exam.
Lacey Aug 9, 2024
Yeah, definitely. I experienced the same.
Syeda
I passed, Thank you Cramkey for your precious Dumps.
Stella Aug 25, 2024
That's great. I think I'll give Cramkey Dumps a try.
Question 46

You need to train a ControlNet model with Stable Diffusion XL for an image editing use case. You want to train this model as quickly as possible. Which hardware configuration should you choose to train your model?

Options:

A.

Configure one a2-highgpu-1g instance with an NVIDIA A100 GPU with 80 GB of RAM. Use float32 precision during model training.

B.

Configure one a2-highgpu-1g instance with an NVIDIA A100 GPU with 80 GB of RAM. Use bfloat16 quantization during model training.

C.

Configure four n1-standard-16 instances, each with one NVIDIA Tesla T4 GPU with 16 GB of RAM. Use float32 precision during model training.

D.

Configure four n1-standard-16 instances, each with one NVIDIA Tesla T4 GPU with 16 GB of RAM. Use float16 quantization during model training.

Discussion
Question 47

You work on a team that builds state-of-the-art deep learning models by using the TensorFlow framework. Your team runs multiple ML experiments each week which makes it difficult to track the experiment runs. You want a simple approach to effectively track, visualize and debug ML experiment runs on Google Cloud while minimizing any overhead code. How should you proceed?

Options:

A.

Set up Vertex Al Experiments to track metrics and parameters Configure Vertex Al TensorBoard for visualization.

B.

Set up a Cloud Function to write and save metrics files to a Cloud Storage Bucket Configure a Google Cloud VM to host TensorBoard locally for visualization.

C.

Set up a Vertex Al Workbench notebook instance Use the instance to save metrics data in a Cloud Storage bucket and to host TensorBoard locally for visualization.

D.

Set up a Cloud Function to write and save metrics files to a BigQuery table. Configure a Google Cloud VM to host TensorBoard locally for visualization.

Discussion
Page: 11 / 21
Title
Questions
Posted

Professional-Machine-Learning-Engineer
PDF

$42  $104.99

Professional-Machine-Learning-Engineer Testing Engine

$50  $124.99

Professional-Machine-Learning-Engineer PDF + Testing Engine

$66  $164.99