Google Professional Data Engineer Exam
Last Update Feb 22, 2025
Total Questions : 374
To help you prepare for the Professional-Data-Engineer Google exam, we are offering free Professional-Data-Engineer Google exam questions. All you need to do is sign up, provide your details, and prepare with the free Professional-Data-Engineer practice questions. Once you have done that, you will have access to the entire pool of Google Professional Data Engineer Exam Professional-Data-Engineer test questions which will help you better prepare for the exam. Additionally, you can also find a range of Google Professional Data Engineer Exam resources online to help you better understand the topics covered on the exam, such as Google Professional Data Engineer Exam Professional-Data-Engineer video tutorials, blogs, study guides, and more. Additionally, you can also practice with realistic Google Professional-Data-Engineer exam simulations and get feedback on your progress. Finally, you can also share your progress with friends and family and get encouragement and support from them.
You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?
You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?
Your company has hired a new data scientist who wants to perform complicated analyses across very large datasets stored in Google Cloud Storage and in a Cassandra cluster on Google Compute Engine. The scientist primarily wants to create labelled data sets for machine learning projects, along with some visualization tasks. She reports that her laptop is not powerful enough to perform her tasks and it is slowing her down. You want to help her perform her tasks. What should you do?
You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?