Exam Name: | AWS Certified Machine Learning - Specialty | ||
Exam Code: | MLS-C01 Dumps | ||
Vendor: | Amazon Web Services | Certification: | AWS Certified Specialty |
Questions: | 307 Q&A's | Shared By: | inara |
A data scientist wants to use Amazon Forecast to build a forecasting model for inventory demand for a retail company. The company has provided a dataset of historic inventory demand for its products as a .csv file stored in an Amazon S3 bucket. The table below shows a sample of the dataset.
How should the data scientist transform the data?
A manufacturing company asks its Machine Learning Specialist to develop a model that classifies defective parts into one of eight defect types. The company has provided roughly 100000 images per defect type for training During the injial training of the image classification model the Specialist notices that the validation accuracy is 80%, while the training accuracy is 90% It is known that human-level performance for this type of image classification is around 90%
What should the Specialist consider to fix this issue1?
A Machine Learning Specialist is building a prediction model for a large number of features using linear models, such as linear regression and logistic regression During exploratory data analysis the Specialist observes that many features are highly correlated with each other This may make the model unstable
What should be done to reduce the impact of having such a large number of features?
A company that promotes healthy sleep patterns by providing cloud-connected devices currently hosts a sleep tracking application on AWS. The application collects device usage information from device users. The company's Data Science team is building a machine learning model to predict if and when a user will stop utilizing the company's devices. Predictions from this model are used by a downstream application that determines the best approach for contacting users.
The Data Science team is building multiple versions of the machine learning model to evaluate each version against the company’s business goals. To measure long-term effectiveness, the team wants to run multiple versions of the model in parallel for long periods of time, with the ability to control the portion of inferences served by the models.
Which solution satisfies these requirements with MINIMAL effort?