Exam Name: | AWS Certified Machine Learning - Specialty | ||
Exam Code: | MLS-C01 Dumps | ||
Vendor: | Amazon Web Services | Certification: | AWS Certified Specialty |
Questions: | 322 Q&A's | Shared By: | chaim |
A company that manufactures mobile devices wants to determine and calibrate the appropriate sales price for its devices. The company is collecting the relevant data and is determining data features that it can use to train machine learning (ML) models. There are more than 1,000 features, and the company wants to determine the primary features that contribute to the sales price.
Which techniques should the company use for feature selection? (Choose three.)
A machine learning specialist is applying a linear least squares regression model to a dataset with 1,000 records and 50 features. Prior to training, the specialist notices that two features are perfectly linearly dependent.
Why could this be an issue for the linear least squares regression model?
A data scientist at a financial services company used Amazon SageMaker to train and deploy a model that predicts loan defaults. The model analyzes new loan applications and predicts the risk of loan default. To train the model, the data scientist manually extracted loan data from a database. The data scientist performed the model training and deployment steps in a Jupyter notebook that is hosted on SageMaker Studio notebooks. The model's prediction accuracy is decreasing over time. Which combination of slept in the MOST operationally efficient way for the data scientist to maintain the model's accuracy? (Select TWO.)
A manufacturing company wants to monitor its devices for anomalous behavior. A data scientist has trained an Amazon SageMaker scikit-learn model that classifies a device as normal or anomalous based on its 4-day telemetry. The 4-day telemetry of each device is collected in a separate file and is placed in an Amazon S3 bucket once every hour. The total time to run the model across the telemetry for all devices is 5 minutes.
What is the MOST cost-effective solution for the company to use to run the model across the telemetry for all the devices?