Exam Name: | AWS Certified Machine Learning - Specialty | ||
Exam Code: | MLS-C01 Dumps | ||
Vendor: | Amazon Web Services | Certification: | AWS Certified Specialty |
Questions: | 322 Q&A's | Shared By: | noel |
A company wants to classify user behavior as either fraudulent or normal. Based on internal research, a Machine Learning Specialist would like to build a binary classifier based on two features: age of account and transaction month. The class distribution for these features is illustrated in the figure provided.
Based on this information, which model would have the HIGHEST recall with respect to the fraudulent class?
A company’s data scientist has trained a new machine learning model that performs better on test data than the company’s existing model performs in the production environment. The data scientist wants to replace the existing model that runs on an Amazon SageMaker endpoint in the production environment. However, the company is concerned that the new model might not work well on the production environment data.
The data scientist needs to perform A/B testing in the production environment to evaluate whether the new model performs well on production environment data.
Which combination of steps must the data scientist take to perform the A/B testing? (Choose two.)
A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.
The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.
The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.
Which solution will meet these requirements?
A data scientist receives a new dataset in .csv format and stores the dataset in Amazon S3. The data scientist will use this dataset to train a machine learning (ML) model.
The data scientist first needs to identify any potential data quality issues in the dataset. The data scientist must identify values that are missing or values that are not valid. The data scientist must also identify the number of outliers in the dataset.
Which solution will meet these requirements with the LEAST operational effort?)