New Year Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated MLS-C01 Exam Questions and Answers by annabella

Page: 13 / 22

Amazon Web Services MLS-C01 Exam Overview :

Exam Name: AWS Certified Machine Learning - Specialty
Exam Code: MLS-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Specialty
Questions: 307 Q&A's Shared By: annabella
Question 52

A Machine Learning Specialist is building a convolutional neural network (CNN) that will classify 10 types of animals. The Specialist has built a series of layers in a neural network that will take an input image of an animal, pass it through a series of convolutional and pooling layers, and then finally pass it through a dense and fully connected layer with 10 nodes The Specialist would like to get an output from the neural network that is a probability distribution of how likely it is that the input image belongs to each of the 10 classes

Which function will produce the desired output?

Options:

A.

Dropout

B.

Smooth L1 loss

C.

Softmax

D.

Rectified linear units (ReLU)

Discussion
Question 53

A power company wants to forecast future energy consumption for its customers in residential properties and commercial business properties. Historical power consumption data for the last 10 years is available. A team of data scientists who performed the initial data analysis and feature selection will include the historical power consumption data and data such as weather, number of individuals on the property, and public holidays.

The data scientists are using Amazon Forecast to generate the forecasts.

Which algorithm in Forecast should the data scientists use to meet these requirements?

Options:

A.

Autoregressive Integrated Moving Average (AIRMA)

B.

Exponential Smoothing (ETS)

C.

Convolutional Neural Network - Quantile Regression (CNN-QR)

D.

Prophet

Discussion
Question 54

A machine learning specialist works for a fruit processing company and needs to build a system that

categorizes apples into three types. The specialist has collected a dataset that contains 150 images for each type of apple and applied transfer learning on a neural network that was pretrained on ImageNet with this dataset.

The company requires at least 85% accuracy to make use of the model.

After an exhaustive grid search, the optimal hyperparameters produced the following:

68% accuracy on the training set

67% accuracy on the validation set

What can the machine learning specialist do to improve the system’s accuracy?

Options:

A.

Upload the model to an Amazon SageMaker notebook instance and use the Amazon SageMaker HPO feature to optimize the model’s hyperparameters.

B.

Add more data to the training set and retrain the model using transfer learning to reduce the bias.

C.

Use a neural network model with more layers that are pretrained on ImageNet and apply transfer learning to increase the variance.

D.

Train a new model using the current neural network architecture.

Discussion
Pippa
I was so happy to see that almost all the questions on the exam were exactly what I found in their Dumps.
Anastasia Sep 21, 2024
You are right…It was amazing! The Cramkey Dumps were so comprehensive and well-organized, it made studying for the exam a breeze.
Lennox
Something Special that they provide a comprehensive overview of the exam content. They cover all the important topics and concepts, so you can be confident that you are well-prepared for the test.
Aiza Oct 25, 2024
That makes sense. What makes Cramkey Dumps different from other study materials?
Billy
It was like deja vu! I was confident going into the exam because I had already seen those questions before.
Vincent Aug 15, 2024
Definitely. And the best part is, I passed! I feel like all that hard work and preparation paid off. Cramkey is the best resource for all students!!!
Esmae
I highly recommend Cramkey Dumps to anyone preparing for the certification exam.
Mollie Aug 15, 2024
Absolutely. They really make it easier to study and retain all the important information. I'm so glad I found Cramkey Dumps.
Question 55

A manufacturing company has a large set of labeled historical sales data The manufacturer would like to predict how many units of a particular part should be produced each quarter Which machine learning approach should be used to solve this problem?

Options:

A.

Logistic regression

B.

Random Cut Forest (RCF)

C.

Principal component analysis (PCA)

D.

Linear regression

Discussion
Page: 13 / 22
Title
Questions
Posted

MLS-C01
PDF

$36.75  $104.99

MLS-C01 Testing Engine

$43.75  $124.99

MLS-C01 PDF + Testing Engine

$57.75  $164.99