Exam Name: | Designing and Implementing a Data Science Solution on Azure | ||
Exam Code: | DP-100 Dumps | ||
Vendor: | Microsoft | Certification: | Microsoft Azure |
Questions: | 441 Q&A's | Shared By: | coby |
: 215
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You train a classification model by using a logistic regression algorithm.
You must be able to explain the model’s predictions by calculating the importance of each feature, both as an overall global relative importance value and as a measure of local importance for a specific set of predictions.
You need to create an explainer that you can use to retrieve the required global and local feature importance values.
Solution: Create a MimicExplainer.
Does the solution meet the goal?
You arc I mating a deep learning model to identify cats and dogs. You have 25,000 color images.
You must meet the following requirements:
• Reduce the number of training epochs.
• Reduce the size of the neural network.
• Reduce over-fitting of the neural network.
You need to select the image modification values.
Which value should you use? To answer, select the appropriate Options in the answer area.
NOTE: Each correct selection is worth one point.
You create an Azure Machine Learning workspace. You train an MLflow-formatted regression model by using tabular structured data.
You must use a Responsible Al dashboard to assess the model.
You need to use the Azure Machine Learning studio Ul to generate the Responsible A dashboard.
What should you do first?
You have a dataset that contains 2,000 rows. You are building a machine learning classification model by using Azure Learning Studio. You add a Partition and Sample module to the experiment.
You need to configure the module. You must meet the following requirements:
Divide the data into subsets
Assign the rows into folds using a round-robin method
Allow rows in the dataset to be reused
How should you configure the module? To answer, select the appropriate options in the dialog box in the answer area.
NOTE: Each correct selection is worth one point.