Exam Name: | Designing and Implementing a Data Science Solution on Azure | ||
Exam Code: | DP-100 Dumps | ||
Vendor: | Microsoft | Certification: | Microsoft Azure |
Questions: | 441 Q&A's | Shared By: | bianca |
You use the Azure Machine learning SDK v2 tor Python and notebooks to tram a model. You use Python code to create a compute target, an environment, and a taring script. You need to prepare information to submit a training job.
Which class should you use?
You train and register a model in your Azure Machine Learning workspace.
You must publish a pipeline that enables client applications to use the model for batch inferencing. You must use a pipeline with a single ParallelRunStep step that runs a Python inferencing script to get predictions from the input data.
You need to create the inferencing script for the ParallelRunStep pipeline step.
Which two functions should you include? Each correct answer presents part of the solution.
NOTE: Each correct selection is worth one point.
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You train and register an Azure Machine Learning model.
You plan to deploy the model to an online endpoint.
You need to ensure that applications will be able to use the authentication method with a non-expiring artifact to access the model.
Solution:
Create a managed online endpoint and set the value of its auto_mode parameter to key. Deploy the model to the inline endpoint.
Does the solution meet the goal?
You create a multi-class image classification deep learning model that uses a set of labeled images. You
create a script file named train.py that uses the PyTorch 1.3 framework to train the model.
You must run the script by using an estimator. The code must not require any additional Python libraries to be installed in the environment for the estimator. The time required for model training must be minimized.
You need to define the estimator that will be used to run the script.
Which estimator type should you use?