Weekend Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Page: 1 / 5

ML Data Scientist Databricks Certified Machine Learning Associate Exam

Databricks Certified Machine Learning Associate Exam

Last Update Feb 23, 2025
Total Questions : 74

To help you prepare for the Databricks-Machine-Learning-Associate Databricks exam, we are offering free Databricks-Machine-Learning-Associate Databricks exam questions. All you need to do is sign up, provide your details, and prepare with the free Databricks-Machine-Learning-Associate practice questions. Once you have done that, you will have access to the entire pool of Databricks Certified Machine Learning Associate Exam Databricks-Machine-Learning-Associate test questions which will help you better prepare for the exam. Additionally, you can also find a range of Databricks Certified Machine Learning Associate Exam resources online to help you better understand the topics covered on the exam, such as Databricks Certified Machine Learning Associate Exam Databricks-Machine-Learning-Associate video tutorials, blogs, study guides, and more. Additionally, you can also practice with realistic Databricks Databricks-Machine-Learning-Associate exam simulations and get feedback on your progress. Finally, you can also share your progress with friends and family and get encouragement and support from them.

Questions 2

A data scientist is utilizing MLflow Autologging to automatically track their machine learning experiments. After completing a series of runs for the experiment experiment_id, the data scientist wants to identify the run_id of the run with the best root-mean-square error (RMSE).

Which of the following lines of code can be used to identify the run_id of the run with the best RMSE in experiment_id?

A)

Questions 2

B)

Questions 2

C)

Questions 2

D)

Questions 2

Options:

A.  

OptionA

B.  

Option B

C.  

Option C

D.  

Option D

Discussion 0
Questions 3

A data scientist is using the following code block to tune hyperparameters for a machine learning model:

Questions 3

Which change can they make the above code block to improve the likelihood of a more accurate model?

Options:

A.  

Increase num_evals to 100

B.  

Change fmin() to fmax()

C.  

Change sparkTrials() to Trials()

D.  

Change tpe.suggest to random.suggest

Discussion 0
Melody
My experience with Cramkey was great! I was surprised to see that many of the questions in my exam appeared in the Cramkey dumps.
Colby Aug 17, 2024
Yes, In fact, I got a score of above 85%. And I attribute a lot of my success to Cramkey's dumps.
Hassan
Highly Recommended Dumps… today I passed my exam! Same questions appear. I bought Full Access.
Kasper Oct 20, 2024
Hey wonderful….so same questions , sounds good. Planning to write this week, I will go for full access today.
Aliza
I used these dumps for my recent certification exam and I can say with certainty that they're absolutely valid dumps. The questions were very similar to what came up in the actual exam.
Jakub Sep 22, 2024
That's great to hear. I am going to try them soon.
Ivan
I tried these dumps for my recent certification exam and I found it pretty helpful.
Elis Sep 17, 2024
Agree!!! The questions in the dumps were quite similar to what came up in the actual exam. It gave me a good idea of the types of questions to expect and helped me revise efficiently.
Josie
I just passed my certification exam using their dumps and I must say, I was thoroughly impressed.
Fatimah Oct 24, 2024
You’re right. The dumps were authentic and covered all the important topics. I felt confident going into the exam and it paid off.
Questions 4

A data scientist learned during their training to always use 5-fold cross-validation in their model development workflow. A colleague suggests that there are cases where a train-validation split could be preferred over k-fold cross-validation when k > 2.

Which of the following describes a potential benefit of using a train-validation split over k-fold cross-validation in this scenario?

Options:

A.  

A holdout set is not necessary when using a train-validation split

B.  

Reproducibility is achievable when using a train-validation split

C.  

Fewer hyperparameter values need to be tested when usinga train-validation split

D.  

Bias is avoidable when using a train-validation split

E.  

Fewer models need to be trained when using a train-validation split

Discussion 0
Questions 5

A data scientist has created a linear regression model that useslog(price)as a label variable. Using this model, they have performed inference and the predictions and actual label values are in Spark DataFramepreds_df.

They are using the following code block to evaluate the model:

regression_evaluator.setMetricName("rmse").evaluate(preds_df)

Which of the following changes should the data scientist make to evaluate the RMSE in a way that is comparable withprice?

Options:

A.  

They should exponentiate the computed RMSE value

B.  

They should take the log of the predictions before computing the RMSE

C.  

They should evaluate the MSE of the log predictions to compute the RMSE

D.  

They should exponentiate the predictions before computing the RMSE

Discussion 0

Databricks-Machine-Learning-Associate
PDF

$36.75  $104.99

Databricks-Machine-Learning-Associate Testing Engine

$43.75  $124.99

Databricks-Machine-Learning-Associate PDF + Testing Engine

$57.75  $164.99