Summer Special Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: big60

Page: 1 / 5

ML Data Scientist Databricks Certified Machine Learning Associate Exam

Databricks Certified Machine Learning Associate Exam

Last Update Sep 18, 2025
Total Questions : 74

To help you prepare for the Databricks-Machine-Learning-Associate Databricks exam, we are offering free Databricks-Machine-Learning-Associate Databricks exam questions. All you need to do is sign up, provide your details, and prepare with the free Databricks-Machine-Learning-Associate practice questions. Once you have done that, you will have access to the entire pool of Databricks Certified Machine Learning Associate Exam Databricks-Machine-Learning-Associate test questions which will help you better prepare for the exam. Additionally, you can also find a range of Databricks Certified Machine Learning Associate Exam resources online to help you better understand the topics covered on the exam, such as Databricks Certified Machine Learning Associate Exam Databricks-Machine-Learning-Associate video tutorials, blogs, study guides, and more. Additionally, you can also practice with realistic Databricks Databricks-Machine-Learning-Associate exam simulations and get feedback on your progress. Finally, you can also share your progress with friends and family and get encouragement and support from them.

Questions 2

A data scientist is utilizing MLflow Autologging to automatically track their machine learning experiments. After completing a series of runs for the experiment experiment_id, the data scientist wants to identify the run_id of the run with the best root-mean-square error (RMSE).

Which of the following lines of code can be used to identify the run_id of the run with the best RMSE in experiment_id?

A)

Questions 2

B)

Questions 2

C)

Questions 2

D)

Questions 2

Options:

A.  

OptionA

B.  

Option B

C.  

Option C

D.  

Option D

Discussion 0
Ilyas
Definitely. I felt much more confident and prepared because of the Cramkey Dumps. I was able to answer most of the questions with ease and I think that helped me to score well on the exam.
Saoirse Aug 17, 2025
That's amazing. I'm glad you found something that worked for you. Maybe I should try them out for my next exam.
Sarah
Yeah, I was so relieved when I saw that the question appeared in the exam were similar to their exam dumps. It made the exam a lot easier and I felt confident going into it.
Aaliyah Aug 26, 2025
Same here. I've heard mixed reviews about using exam dumps, but for us, it definitely paid off.
Inaaya
Are these Dumps worth buying?
Fraser Aug 12, 2025
Yes, of course, they are necessary to pass the exam. They give you an insight into the types of questions that could come up and help you prepare effectively.
Lennie
I passed my exam and achieved wonderful score, I highly recommend it.
Emelia Aug 3, 2025
I think I'll give Cramkey a try next time I take a certification exam. Thanks for the recommendation!
Questions 3

A data scientist is using the following code block to tune hyperparameters for a machine learning model:

Questions 3

Which change can they make the above code block to improve the likelihood of a more accurate model?

Options:

A.  

Increase num_evals to 100

B.  

Change fmin() to fmax()

C.  

Change sparkTrials() to Trials()

D.  

Change tpe.suggest to random.suggest

Discussion 0
Questions 4

A data scientist learned during their training to always use 5-fold cross-validation in their model development workflow. A colleague suggests that there are cases where a train-validation split could be preferred over k-fold cross-validation when k > 2.

Which of the following describes a potential benefit of using a train-validation split over k-fold cross-validation in this scenario?

Options:

A.  

A holdout set is not necessary when using a train-validation split

B.  

Reproducibility is achievable when using a train-validation split

C.  

Fewer hyperparameter values need to be tested when usinga train-validation split

D.  

Bias is avoidable when using a train-validation split

E.  

Fewer models need to be trained when using a train-validation split

Discussion 0
Questions 5

A data scientist has created a linear regression model that useslog(price)as a label variable. Using this model, they have performed inference and the predictions and actual label values are in Spark DataFramepreds_df.

They are using the following code block to evaluate the model:

regression_evaluator.setMetricName("rmse").evaluate(preds_df)

Which of the following changes should the data scientist make to evaluate the RMSE in a way that is comparable withprice?

Options:

A.  

They should exponentiate the computed RMSE value

B.  

They should take the log of the predictions before computing the RMSE

C.  

They should evaluate the MSE of the log predictions to compute the RMSE

D.  

They should exponentiate the predictions before computing the RMSE

Discussion 0

Databricks-Machine-Learning-Associate
PDF

$42  $104.99

Databricks-Machine-Learning-Associate Testing Engine

$50  $124.99

Databricks-Machine-Learning-Associate PDF + Testing Engine

$66  $164.99