Exam Name: | Databricks Certified Machine Learning Associate Exam | ||
Exam Code: | Databricks-Machine-Learning-Associate Dumps | ||
Vendor: | Databricks | Certification: | ML Data Scientist |
Questions: | 74 Q&A's | Shared By: | laiba |
Which of the following tools can be used to distribute large-scale feature engineering without the use of a UDF or pandas Function API for machine learning pipelines?
A machine learning engineer wants to parallelize the training of group-specific models using the Pandas Function API. They have developed thetrain_modelfunction, and they want to apply it to each group of DataFramedf.
They have written the following incomplete code block:
Which of the following pieces of code can be used to fill in the above blank to complete the task?
A machine learning engineer is trying to scale a machine learning pipeline by distributing its single-node model tuning process. After broadcasting the entire training data onto each core, each core in the cluster can train one model at a time. Because the tuning process is still running slowly, the engineer wants to increase the level of parallelism from 4 cores to 8 cores to speed up the tuning process. Unfortunately, the total memory in the cluster cannot be increased.
In which of the following scenarios will increasing the level of parallelism from 4 to 8 speed up the tuning process?
A data scientist is wanting to explore the Spark DataFrame spark_df. The data scientist wants visual histograms displaying the distribution of numeric features to be included in the exploration.
Which of the following lines of code can the data scientist run to accomplish the task?