New Year Special 75% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 75brite

Databricks Updated Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Questions and Answers by zaviyar

Page: 5 / 6

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Overview :

Exam Name: Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Exam Code: Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Dumps
Vendor: Databricks Certification: Databricks Certification
Questions: 180 Q&A's Shared By: zaviyar
Question 20

Which of the following code blocks uses a schema fileSchema to read a parquet file at location filePath into a DataFrame?

Options:

A.

spark.read.schema(fileSchema).format("parquet").load(filePath)

B.

spark.read.schema("fileSchema").format("parquet").load(filePath)

C.

spark.read().schema(fileSchema).parquet(filePath)

D.

spark.read().schema(fileSchema).format(parquet).load(filePath)

E.

spark.read.schema(fileSchema).open(filePath)

Discussion
Question 21

The code block shown below should add a column itemNameBetweenSeparators to DataFrame itemsDf. The column should contain arrays of maximum 4 strings. The arrays should be composed of

the values in column itemsDf which are separated at - or whitespace characters. Choose the answer that correctly fills the blanks in the code block to accomplish this.

Sample of DataFrame itemsDf:

1.+------+----------------------------------+-------------------+

2.|itemId|itemName |supplier |

3.+------+----------------------------------+-------------------+

4.|1 |Thick Coat for Walking in the Snow|Sports Company Inc.|

5.|2 |Elegant Outdoors Summer Dress |YetiX |

6.|3 |Outdoors Backpack |Sports Company Inc.|

7.+------+----------------------------------+-------------------+

Code block:

itemsDf.__1__(__2__, __3__(__4__, "[\s\-]", __5__))

Options:

A.

1. withColumn

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 4

(Correct)

B.

1. withColumnRenamed

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 4

C.

1. withColumnRenamed

2. "itemName"

3. split

4. "itemNameBetweenSeparators"

5. 4

D.

1. withColumn

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 5

E.

1. withColumn

2. itemNameBetweenSeparators

3. str_split

4. "itemName"

5. 5

Discussion
Question 22

In which order should the code blocks shown below be run in order to create a DataFrame that shows the mean of column predError of DataFrame transactionsDf per column storeId and productId,

where productId should be either 2 or 3 and the returned DataFrame should be sorted in ascending order by column storeId, leaving out any nulls in that column?

DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.| 4| null| null| 3| 2|null|

8.| 5| null| null| null| 2|null|

9.| 6| 3| 2| 25| 2|null|

10.+-------------+---------+-----+-------+---------+----+

1. .mean("predError")

2. .groupBy("storeId")

3. .orderBy("storeId")

4. transactionsDf.filter(transactionsDf.storeId.isNotNull())

5. .pivot("productId", [2, 3])

Options:

A.

4, 5, 2, 3, 1

B.

4, 2, 1

C.

4, 1, 5, 2, 3

D.

4, 2, 5, 1, 3

E.

4, 3, 2, 5, 1

Discussion
Question 23

The code block displayed below contains an error. The code block is intended to return all columns of DataFrame transactionsDf except for columns predError, productId, and value. Find the error.

Excerpt of DataFrame transactionsDf:

transactionsDf.select(~col("predError"), ~col("productId"), ~col("value"))

Options:

A.

The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value wrapped in the col operator so they

should be expressed like drop(col(predError), col(productId), col(value)).

B.

The select operator should be replaced with the deselect operator.

C.

The column names in the select operator should not be strings and wrapped in the col operator, so they should be expressed like select(~col(predError), ~col(productId), ~col(value)).

D.

The select operator should be replaced by the drop operator.

E.

The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value as strings.

(Correct)

Discussion
Miriam
Highly recommended Dumps. 100% authentic and reliable. Passed my exam with wonderful score.
Milan Dec 20, 2025
I see. Thanks for the information. I'll definitely keep Cramkey in mind for my next exam.
Lennox
Something Special that they provide a comprehensive overview of the exam content. They cover all the important topics and concepts, so you can be confident that you are well-prepared for the test.
Aiza Dec 6, 2025
That makes sense. What makes Cramkey Dumps different from other study materials?
Ilyas
Definitely. I felt much more confident and prepared because of the Cramkey Dumps. I was able to answer most of the questions with ease and I think that helped me to score well on the exam.
Saoirse Dec 20, 2025
That's amazing. I'm glad you found something that worked for you. Maybe I should try them out for my next exam.
Ari
Can anyone explain what are these exam dumps and how are they?
Ocean Dec 20, 2025
They're exam preparation materials that are designed to help you prepare for various certification exams. They provide you with up-to-date and accurate information to help you pass your exams.
Osian
Dumps are fantastic! I recently passed my certification exam using these dumps and I must say, they are 100% valid.
Azaan Dec 6, 2025
They are incredibly accurate and valid. I felt confident going into my exam because the dumps covered all the important topics and the questions were very similar to what I saw on the actual exam. The team of experts behind Cramkey Dumps make sure the information is relevant and up-to-date.
Page: 5 / 6

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0
PDF

$26.25  $104.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Testing Engine

$31.25  $124.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 PDF + Testing Engine

$41.25  $164.99