Month End Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Databricks Updated Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Questions and Answers by nia

Page: 6 / 6

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Overview :

Exam Name: Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Exam Code: Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Dumps
Vendor: Databricks Certification: Databricks Certification
Questions: 180 Q&A's Shared By: nia
Question 24

The code block displayed below contains an error. The code block should return a DataFrame in which column predErrorAdded contains the results of Python function add_2_if_geq_3 as applied to

numeric and nullable column predError in DataFrame transactionsDf. Find the error.

Code block:

1.def add_2_if_geq_3(x):

2. if x is None:

3. return x

4. elif x >= 3:

5. return x+2

6. return x

7.

8.add_2_if_geq_3_udf = udf(add_2_if_geq_3)

9.

10.transactionsDf.withColumnRenamed("predErrorAdded", add_2_if_geq_3_udf(col("predError")))

Options:

A.

The operator used to adding the column does not add column predErrorAdded to the DataFrame.

B.

Instead of col("predError"), the actual DataFrame with the column needs to be passed, like so transactionsDf.predError.

C.

The udf() method does not declare a return type.

D.

UDFs are only available through the SQL API, but not in the Python API as shown in the code block.

E.

The Python function is unable to handle null values, resulting in the code block crashing on execution.

Discussion
Question 25

Which of the following code blocks returns a copy of DataFrame transactionsDf that only includes columns transactionId, storeId, productId and f?

Sample of DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.+-------------+---------+-----+-------+---------+----+

Options:

A.

transactionsDf.drop(col("value"), col("predError"))

B.

transactionsDf.drop("predError", "value")

C.

transactionsDf.drop(value, predError)

D.

transactionsDf.drop(["predError", "value"])

E.

transactionsDf.drop([col("predError"), col("value")])

Discussion
Question 26

Which of the following code blocks reads the parquet file stored at filePath into DataFrame itemsDf, using a valid schema for the sample of itemsDf shown below?

Sample of itemsDf:

1.+------+-----------------------------+-------------------+

2.|itemId|attributes |supplier |

3.+------+-----------------------------+-------------------+

4.|1 |[blue, winter, cozy] |Sports Company Inc.|

5.|2 |[red, summer, fresh, cooling]|YetiX |

6.|3 |[green, summer, travel] |Sports Company Inc.|

7.+------+-----------------------------+-------------------+

Options:

A.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType()),

3. StructField("attributes", StringType()),

4. StructField("supplier", StringType())])

5.

6.itemsDf = spark.read.schema(itemsDfSchema).parquet(filePath)

B.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType),

3. StructField("attributes", ArrayType(StringType)),

4. StructField("supplier", StringType)])

5.

6.itemsDf = spark.read.schema(itemsDfSchema).parquet(filePath)

C.

1.itemsDf = spark.read.schema('itemId integer, attributes , supplier string').parquet(filePath)

D.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType()),

3. StructField("attributes", ArrayType(StringType())),

4. StructField("supplier", StringType())])

5.

6.itemsDf = spark.read.schema(itemsDfSchema).parquet(filePath)

E.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType()),

3. StructField("attributes", ArrayType([StringType()])),

4. StructField("supplier", StringType())])

5.

6.itemsDf = spark.read(schema=itemsDfSchema).parquet(filePath)

Discussion
Question 27

Which of the following statements about RDDs is incorrect?

Options:

A.

An RDD consists of a single partition.

B.

The high-level DataFrame API is built on top of the low-level RDD API.

C.

RDDs are immutable.

D.

RDD stands for Resilient Distributed Dataset.

E.

RDDs are great for precisely instructing Spark on how to do a query.

Discussion
River
Hey, I used Cramkey Dumps to prepare for my recent exam and I passed it.
Lewis Sep 11, 2024
Yeah, I used these dumps too. And I have to say, I was really impressed with the results.
Wyatt
Passed my exam… Thank you so much for your excellent Exam Dumps.
Arjun Sep 18, 2024
That sounds really useful. I'll definitely check it out.
Alessia
Amazing Dumps. Found almost all questions in actual exam whih I prepared from these valuable dumps. Recommended!!!!
Belle Nov 2, 2024
That's impressive. I've been struggling with finding good study material for my certification. Maybe I should give Cramkey Dumps a try.
Addison
Want to tell everybody through this platform that I passed my exam with excellent score. All credit goes to Cramkey Exam Dumps.
Libby Aug 9, 2024
That's good to know. I might check it out for my next IT certification exam. Thanks for the info.
Page: 6 / 6

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0
PDF

$36.75  $104.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Testing Engine

$43.75  $124.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 PDF + Testing Engine

$57.75  $164.99