New Year Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Databricks Updated Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Questions and Answers by nia

Page: 6 / 6

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Overview :

Exam Name: Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Exam Code: Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Dumps
Vendor: Databricks Certification: Databricks Certification
Questions: 180 Q&A's Shared By: nia
Question 24

The code block displayed below contains an error. The code block should return a DataFrame in which column predErrorAdded contains the results of Python function add_2_if_geq_3 as applied to

numeric and nullable column predError in DataFrame transactionsDf. Find the error.

Code block:

1.def add_2_if_geq_3(x):

2. if x is None:

3. return x

4. elif x >= 3:

5. return x+2

6. return x

7.

8.add_2_if_geq_3_udf = udf(add_2_if_geq_3)

9.

10.transactionsDf.withColumnRenamed("predErrorAdded", add_2_if_geq_3_udf(col("predError")))

Options:

A.

The operator used to adding the column does not add column predErrorAdded to the DataFrame.

B.

Instead of col("predError"), the actual DataFrame with the column needs to be passed, like so transactionsDf.predError.

C.

The udf() method does not declare a return type.

D.

UDFs are only available through the SQL API, but not in the Python API as shown in the code block.

E.

The Python function is unable to handle null values, resulting in the code block crashing on execution.

Discussion
Question 25

Which of the following code blocks returns a copy of DataFrame transactionsDf that only includes columns transactionId, storeId, productId and f?

Sample of DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.+-------------+---------+-----+-------+---------+----+

Options:

A.

transactionsDf.drop(col("value"), col("predError"))

B.

transactionsDf.drop("predError", "value")

C.

transactionsDf.drop(value, predError)

D.

transactionsDf.drop(["predError", "value"])

E.

transactionsDf.drop([col("predError"), col("value")])

Discussion
Miley
Hey, I tried Cramkey Dumps for my IT certification exam. They are really awesome and helped me pass my exam with wonderful score.
Megan Nov 10, 2025
That’s great!!! I’ll definitely give it a try. Thanks!!!
Ella-Rose
Amazing website with excellent Dumps. I passed my exam and secured excellent marks!!!
Alisha Nov 4, 2025
Extremely accurate. They constantly update their materials with the latest exam questions and answers, so you can be confident that what you're studying is up-to-date.
Fatima
Hey I passed my exam. The world needs to know about it. I have never seen real exam questions on any other exam preparation resource like I saw on Cramkey Dumps.
Niamh Nov 23, 2025
That's true. Cramkey Dumps are simply the best when it comes to preparing for the certification exam. They have all the key information you need and the questions are very similar to what you'll see on the actual exam.
Ava-Rose
Yes! Cramkey Dumps are amazing I passed my exam…Same these questions were in exam asked.
Ismail Nov 15, 2025
Wow, that sounds really helpful. Thanks, I would definitely consider these dumps for my certification exam.
Mariam
Do anyone think Cramkey questions can help improve exam scores?
Katie Nov 19, 2025
Absolutely! Many people have reported improved scores after using Cramkey Dumps, and there are also success stories of people passing exams on the first try. I already passed this exam. I confirmed above questions were in exam.
Question 26

Which of the following code blocks reads the parquet file stored at filePath into DataFrame itemsDf, using a valid schema for the sample of itemsDf shown below?

Sample of itemsDf:

1.+------+-----------------------------+-------------------+

2.|itemId|attributes |supplier |

3.+------+-----------------------------+-------------------+

4.|1 |[blue, winter, cozy] |Sports Company Inc.|

5.|2 |[red, summer, fresh, cooling]|YetiX |

6.|3 |[green, summer, travel] |Sports Company Inc.|

7.+------+-----------------------------+-------------------+

Options:

A.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType()),

3. StructField("attributes", StringType()),

4. StructField("supplier", StringType())])

5.

6.itemsDf = spark.read.schema(itemsDfSchema).parquet(filePath)

B.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType),

3. StructField("attributes", ArrayType(StringType)),

4. StructField("supplier", StringType)])

5.

6.itemsDf = spark.read.schema(itemsDfSchema).parquet(filePath)

C.

1.itemsDf = spark.read.schema('itemId integer, attributes , supplier string').parquet(filePath)

D.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType()),

3. StructField("attributes", ArrayType(StringType())),

4. StructField("supplier", StringType())])

5.

6.itemsDf = spark.read.schema(itemsDfSchema).parquet(filePath)

E.

1.itemsDfSchema = StructType([

2. StructField("itemId", IntegerType()),

3. StructField("attributes", ArrayType([StringType()])),

4. StructField("supplier", StringType())])

5.

6.itemsDf = spark.read(schema=itemsDfSchema).parquet(filePath)

Discussion
Question 27

Which of the following statements about RDDs is incorrect?

Options:

A.

An RDD consists of a single partition.

B.

The high-level DataFrame API is built on top of the low-level RDD API.

C.

RDDs are immutable.

D.

RDD stands for Resilient Distributed Dataset.

E.

RDDs are great for precisely instructing Spark on how to do a query.

Discussion
Page: 6 / 6

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0
PDF

$36.75  $104.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Testing Engine

$43.75  $124.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 PDF + Testing Engine

$57.75  $164.99