Explanation: Option A is the best design to meet the requirements because it uses a materialized view on top of an external table against the S3 bucket in AWS Singapore. A materialized view is a database object that contains the results of a query and can be refreshed periodically to reflect changes in the underlying data1. An external table is a table that references data files stored in a cloud storage service, such as Amazon S32. By using a materialized view on top of an external table, the company can provide access to frequently changing data, keep egress costs to a minimum, and maintain low latency. This is because the materialized view will cache the query results in Snowflake, reducing the need to access the external data files and incur network charges. The materialized view will also improve the query performance by avoiding scanning the external data files every time. The materialized view can be refreshed on a schedule or on demand to capture the changes in the external data files1.
Option B is not the best design because it uses an external table against the S3 bucket in AWS Singapore and copies the data into transient tables. A transient table is a table that is not subject to the Time Travel and Fail-safe features of Snowflake, and is automatically purged after a period of time3. By using an external table and copying the data into transient tables, the company will incur more egress costs and operational overhead than using a materialized view. This is because the external table will access the external data files every time a query is executed, and the copy operation will also transfer data from S3 to Snowflake. The transient tables will also consume more storage space in Snowflake and require manual maintenance to ensure they are up to date.
Option C is not the best design because it copies the data between providers from S3 to Azure Blob storage to collocate, then uses Snowpipe for data ingestion. Snowpipe is a service that automates the loading of data from external sources into Snowflake tables4. By copying the data between providers, the company will incur high egress costs and latency, as well as operational complexity and maintenance of the infrastructure. Snowpipe will also add another layer of processing and storage in Snowflake, which may not be necessary if the external data files are already in a queryable format.
Option D is not the best design because it uses AWS Transfer Family to replicate data between the S3 bucket in AWS Singapore and an Azure Netherlands Blob storage, then uses an external table against the Blob storage. AWS Transfer Family is a service that enables secure and seamless transfer of files over SFTP, FTPS, and FTP to and from Amazon S3 or Amazon EFS5. By using AWS Transfer Family, the company will incur high egress costs and latency, as well as operational complexity and maintenance of the infrastructure. The external table will also access the external data files every time a query is executed, which may affect the query performance.
References: 1: Materialized Views 2: External Tables 3: Transient Tables 4: Snowpipe Overview 5: AWS Transfer Family