Special Summer Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated DAS-C01 Exam Questions and Answers by cassandra

Page: 13 / 14

Amazon Web Services DAS-C01 Exam Overview :

Exam Name: AWS Certified Data Analytics - Specialty
Exam Code: DAS-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Data Analytics
Questions: 207 Q&A's Shared By: cassandra
Question 52

A software company hosts an application on AWS, and new features are released weekly. As part of the application testing process, a solution must be developed that analyzes logs from each Amazon EC2 instance to ensure that the application is working as expected after each deployment. The collection and analysis solution should be highly available with the ability to display new information with minimal delays.

Which method should the company use to collect and analyze the logs?

Options:

A.

Enable detailed monitoring on Amazon EC2, use Amazon CloudWatch agent to store logs in Amazon S3, and use Amazon Athena for fast, interactive log analytics.

B.

Use the Amazon Kinesis Producer Library (KPL) agent on Amazon EC2 to collect and send data to Kinesis Data Streams to further push the data to Amazon Elasticsearch Service and visualize using Amazon QuickSight.

C.

Use the Amazon Kinesis Producer Library (KPL) agent on Amazon EC2 to collect and send data to Kinesis Data Firehose to further push the data to Amazon Elasticsearch Service and Kibana.

D.

Use Amazon CloudWatch subscriptions to get access to a real-time feed of logs and have the logs delivered to Amazon Kinesis Data Streams to further push the data to Amazon Elasticsearch Service and Kibana.

Discussion
Question 53

A healthcare company uses AWS data and analytics tools to collect, ingest, and store electronic health record (EHR) data about its patients. The raw EHR data is stored in Amazon S3 in JSON format partitioned by hour, day, and year and is updated every hour. The company wants to maintain the data catalog and metadata in an AWS Glue Data Catalog to be able to access the data using Amazon Athena or Amazon Redshift Spectrum for analytics.

When defining tables in the Data Catalog, the company has the following requirements:

Choose the catalog table name and do not rely on the catalog table naming algorithm. Keep the table updated with new partitions loaded in the respective S3 bucket prefixes.

Which solution meets these requirements with minimal effort?

Options:

A.

Run an AWS Glue crawler that connects to one or more data stores, determines the data structures, and writes tables in the Data Catalog.

B.

Use the AWS Glue console to manually create a table in the Data Catalog and schedule an AWS Lambda function to update the table partitions hourly.

C.

Use the AWS Glue API CreateTable operation to create a table in the Data Catalog. Create an AWS Glue crawler and specify the table as the source.

D.

Create an Apache Hive catalog in Amazon EMR with the table schema definition in Amazon S3, and update the table partition with a scheduled job. Migrate the Hive catalog to the Data Catalog.

Discussion
Freddy
I passed my exam with flying colors and I'm confident who will try it surely ace the exam.
Aleksander Sep 26, 2024
Thanks for the recommendation! I'll check it out.
Syeda
I passed, Thank you Cramkey for your precious Dumps.
Stella Aug 25, 2024
That's great. I think I'll give Cramkey Dumps a try.
Faye
Yayyyy. I passed my exam. I think all students give these dumps a try.
Emmeline Sep 12, 2024
Definitely! I have no doubt new students will find them to be just as helpful as I did.
Hassan
Highly Recommended Dumps… today I passed my exam! Same questions appear. I bought Full Access.
Kasper Oct 20, 2024
Hey wonderful….so same questions , sounds good. Planning to write this week, I will go for full access today.
Vienna
I highly recommend them. They are offering exact questions that we need to prepare our exam.
Jensen Oct 9, 2024
That's great. I think I'll give Cramkey a try next time I take a certification exam. Thanks for the recommendation!
Question 54

A software company wants to use instrumentation data to detect and resolve errors to improve application recovery time. The company requires API usage anomalies, like error rate and response time spikes, to be detected in near-real time (NRT) The company also requires that data analysts have access to dashboards for log analysis in NRT

Which solution meets these requirements'?

Options:

A.

Use Amazon Kinesis Data Firehose as the data transport layer for logging data Use Amazon Kinesis Data Analytics to uncover the NRT API usage anomalies Use Kinesis Data Firehose to deliver log data to Amazon OpenSearch Service (Amazon Elasticsearch Service) for search, log analytics, and application monitoring Use OpenSearch Dashboards (Kibana)in Amazon OpenSearch Service (Amazon Elasticsearch Service) for the dashboards.

B.

Use Amazon Kinesis Data Analytics as the data transport layer for logging data. Use Amazon Kinesis Data Streams to uncover NRT monitoring metrics. Use Amazon Kinesis Data Firehose to deliver log data to Amazon OpenSearch Service (Amazon Elasticsearch Service) for search, log analytics, and application monitoring Use Amazon QuickSight for the dashboards

C.

Use Amazon Kinesis Data Analytics as the data transport layer for logging data and to uncover NRT monitoring metrics Use Amazon Kinesis Data Firehose to deliver log data to Amazon OpenSearch Service (Amazon Elasticsearch Service) for search, log analytics, and application monitoring Use OpenSearch Dashboards (Kibana) in Amazon OpenSearch Service (Amazon Elasticsearch Service) for the dashboards

D.

Use Amazon Kinesis Data Firehose as the data transport layer for logging data Use Amazon Kinesis Data Analytics to uncover NRT monitoring metrics Use Amazon Kinesis Data Streams to deliver log data to Amazon OpenSearch Service (Amazon Elasticsearch Service) for search, log analytics, and application monitoring Use Amazon QuickSight for the dashboards.

Discussion
Question 55

A company with a video streaming website wants to analyze user behavior to make recommendations to users in real time Clickstream data is being sent to Amazon Kinesis Data Streams and reference data is stored in Amazon S3 The company wants a solution that can use standard SQL quenes The solution must also provide a way to look up pre-calculated reference data while making recommendations

Which solution meets these requirements?

Options:

A.

Use an AWS Glue Python shell job to process incoming data from Kinesis Data Streams Use the Boto3 library to write data to Amazon Redshift

B.

Use AWS Glue streaming and Scale to process incoming data from Kinesis Data Streams Use the AWS Glue connector to write data to Amazon Redshift

C.

Use Amazon Kinesis Data Analytics to create an in-application table based upon the reference data Process incoming data from Kinesis Data Streams Use a data stream to write results to Amazon Redshift

D.

Use Amazon Kinesis Data Analytics to create an in-application table based upon the reference data Process incoming data from Kinesis Data Streams Use an Amazon Kinesis Data Firehose delivery stream to write results to Amazon Redshift

Discussion
Page: 13 / 14

DAS-C01
PDF

$36.75  $104.99

DAS-C01 Testing Engine

$43.75  $124.99

DAS-C01 PDF + Testing Engine

$57.75  $164.99